$\begin{array}{c} \mathrm{CS}\ 161 \\ \mathrm{Summer}\ 2024 \end{array}$

Introduction to Computer Security

Exam Prep 12

Q1 Intrusion Detection Scenarios (SU21 For each scenario below, select the best dete		on method	for the attac	-	12 points)
Q1.1 (3 points) The attacker constructs %2e%2e%2f%2e%2e%2f.	a path tr	raversal a	attack with	uRL	escaping:
(A) NIDS, because of interpretation	issues (I	D) HIDS, b	ecause of cos	t	
(B) NIDS, because of cost	(I	E) ——			
(C) HIDS, because of interpretation	issues O(F	F) ——			
NIDS might not recognize this since best option here in order of avoid the Q1.2 (3 points) The attacker is attacking a lamust be installed as quickly as possible	interpretation arge network w	issues of p	percent enco	ding.	
(G) NIDS, because of interpretation	issues (J	J) HIDS, be	ecause of cost	:	
(H) NIDS, because of cost	(F	K) ——			
(I) HIDS, because of interpretation i	ssues (I	L)			
Solution: A major advantage of NII	OS is that they o	can be quic	ckly installed	in order	to cover

an entire network. Because of the time constraints, the NIDS would be the best in order to

mitigate the time cost.

 (A) NIDS, because of interpretation issues (B) NIDS, because of cost (C) HIDS, because of interpretation issues (F) — Solution: A NIDS is not able to decrypt data since it doesn't have the keys that are stored on the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the best IDS to use here. Q1.4 (3 points) The attacker constructs a buffer overflow attack using shellcode they found online in a database of common attacks. (G) Signature-based (H) Specification-based (I) Anomaly-based (II) Anomaly-based 	Q1.3 (3 points) The attacker constructs an atta	ack that is encrypted with HTTPS.				
 ♠ (C) HIDS, because of interpretation issues ♦ Solution: A NIDS is not able to decrypt data since it doesn't have the keys that are stored on the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the best IDS to use here. Q1.4 (3 points) The attacker constructs a buffer overflow attack using shellcode they found online in a database of common attacks. ♠ (G) Signature-based ♠ (J) Behavioral ♠ (H) Specification-based 	(A) NIDS, because of interpretation is	sues (D) HIDS, because of cost				
Solution: A NIDS is not able to decrypt data since it doesn't have the keys that are stored on the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the best IDS to use here. Q1.4 (3 points) The attacker constructs a buffer overflow attack using shellcode they found online in a database of common attacks. (G) Signature-based (H) Specification-based	(B) NIDS, because of cost	(E) ——				
the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the best IDS to use here. Q1.4 (3 points) The attacker constructs a buffer overflow attack using shellcode they found online in a database of common attacks. (G) Signature-based (H) Specification-based	(C) HIDS, because of interpretation is:	sues O(F)—				
the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the best IDS to use here. Q1.4 (3 points) The attacker constructs a buffer overflow attack using shellcode they found online in a database of common attacks. (G) Signature-based (H) Specification-based						
database of common attacks. (G) Signature-based (H) Specification-based (K)	the host. Thus, only the host can decrypt an interpret the requests, and a HIDS would be the					
○ (H) Specification-based ○ (K) —		er overflow attack using shellcode they found online in				
	(G) Signature-based	(J) Behavioral				
(I) Anomaly-based	(H) Specification-based	(K) ——				
	(I) Anomaly-based	(L) ——				

Solution: This shellcode is easily obtainable and has not been modified, so a signature that matches the exact shellcode would be most effective in detecting this attack.

Q2 Low-level Denial of Service

(0 points)

In this question, you will help Mallory develop new ways to conduct denial-of-service (DoS) attacks.

CHARGEN and ECHO are services provided by some UNIX servers. For every UDP packet arriving at port 19, CHARGEN sends back a packet with 0 to 512 random characters. For every UDP packet arriving at port 7, ECHO sends back a packet with the same content.

Mallory wants to perform a DoS attack on two servers. One with IP address A supports CHARGEN, and another with IP address B supports ECHO. Mallory can spoof IP addresses.

- Q2.1 Is it possible to create a single UDP packet with no content which will cause both servers to consume a large amount of bandwidth?
 - If yes, mark 'Possible' and fill in the fields below to create this packet.
 - If no, mark 'Impossible' and explain within the provided lines.

Possible		C) Impossible
If possible, fill in t	he fields:		
Source IP:	В	Destination IP:	
Source port:	7	Destination port:	19
If impossible, why	?		

Solution: Source IP: B, port: 7. Destination IP: A, port: 19. Source and destination can be flipped. Notice this will create a chain of CHARGEN and ECHO that will generate a lot of network traffic.

Q2.2 Assume now that CHARGEN and ECHO are now modified to only respond to TCP packets (post-handshake) and not UDP. Is it possible to create a single TCP SYN packet with no content which will cause both servers to consume a large amount of bandwidth? Assume Mallory is off-path from the two servers.
If yes, mark 'Possible' and fill in the fields below to create this packet.
If no, mark 'Impossible' and explain within the provided lines.

O Possible	Impossible
If possible, fill in the fields:	
Source IP: Source port: Sequence #:	-
If impossible, why?	

Solution: Impossible. As seen in previous question, source/destination IP has to be B/A for the chain to work. If you send a SYN packet to A pretending to be B, A will send SYN-ACK to B, which won't respond since it never sent a SYN. The connection won't be established.