
CS 161
Summer 2024

Introduction to
Computer Security Discussion 10

Question 1 Attack on TCP
Suppose that a client connects to a server, and then performs the following TCP handshake and initial
data transfer:

Client (port PC) Server (port PS)

1. Client sends initial SYN with sequence number X
(usually random).

2. Server sends SYN-ACK with sequence number Y
(also usually random) and ACK X + 1.

3. Client sends ACK with sequence number X + 1 and
ACK Y + 1.

4. Client sends DATA A of length LA with sequence
number X + 1 and ACK Y + 1.
5. Server sends DATA B of length LB with sequence
number Y + 1 and ACK X + 1 + LA.

6. Client sends DATA C of length LC with sequence
number X + 1 + LA and ACK Y + 1 + LB .
7. Data exchange continues until both sides are done
sending data.

SYN

SYN-ACK

ACK

DATA A

DATA B

DATA C

...

Q1.1 Assume that the next transmission in this connection will be DATA D from the server to the client.
What will this packet look like?

Sequence number: Y + 1 + LB ACK: X + 1 + LA + LC

Source port: PS Destination port: PC

Length: LD Flags: ACK

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 6



Q1.2 You should be familiar with the concept and capabilities of a man-in-the-middle as an attacker
who can observe and can modify traffic. There are two other types of relevant attackers in this
scenario:

1. On-path attacker: can observe traffic but cannot modify it.

2. Off-path attacker: cannot observe traffic and cannot modify it.

Carol is an on-path attacker. Can Carol do anything malicious to the connection? If so, what can
she do?

Solution: Yes, Carol can leverage the information she learns from your traffic to hijack the
session.

In part (a), we identified the values of all of the fields of concern expected in the next data
transmission in the connection. Say Carol wants to spoof a packet from the server to the
client; Carol can create a packet with the source IP as the server’s IP, the destination IP as the
client’s IP, and the payload as whatever she wants. To spoof traffic in the other direction, she
swaps the sequence number/ACK, source port/destination port, and source IP/destination IP.
The recipient of this data cannot distinguish it from legitimate traffic, so she has effectively
hijacked the session from her victim, allowing her to inject arbitrary data.

Q1.3 David is an off-path attacker. Can David do anything malicious to the connection? If so, what can
he do?

Solution: No, there isn’t much he can do.

In part (b), we demonstrated that we are effectively defenseless against an attacker that knows
the sequence numbers and the port numbers of the connection. An off-path attacker, however,
does not have the power to observe the traffic and find these parameters.

Even without prior knowledge of these parameters, though, an off-path attacker may attempt
to guess them. In a typical TCP client-server connection, the client’s port is an ephemeral port,
with a maximum potential range of [0, 216−1] (this varies, so we make an overestimation). The
server’s port is usually a well-known port for a specific service, such as port 80 for HTTP, which
makes it much easier to guess. The sequence number and acknowledgement numbers are in
the range [0, 232 − 1]. However, an attacker can just ignore the acknowledgement number or
use a random number. The TCP connection will not be reset with an invalid acknowledgement
number as long as it’s within the window (out of scope). Thus, an attacker has a rough 1

248

chance of successfully brute forcing the correct parameters.

If, for some reason, the initial sequence numbers are not properly randomized, David may
be able to make educated guesses on the sequence numbers and significantly decrease the
range of possibilities. However, assuming that they are properly randomized, this attack is
theoretically possible but largely improbable.

We call this attack blind hijacking, as David has no concrete information when attempting to
hijack the session.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 6 –



Q1.4 The client starts getting responses from the server that don’t make any sense. Inferring that David
is attempting to hijack the connection, the client then immediately sends the server a RST packet,
which terminates the ongoing connection. David wants to impersonate the client by establishing a
new connection. How would he go about doing this?

Solution: If David attempts to start a new connection, he can choose the source port (the
ephemeral port) and the source sequence number to be whatever values he wants. The values of
these parameters for any subsequent transmissions in the connection will then be predictable.
The server’s port remains a well-known port; the only remaining unknown is the server’s
sequence number. Because David is still an off-path attacker, he still has to guess this field,
with an overall probability of 1

232
of success, which we note is higher than the blind hijacking

approach.

Note that there’s now a time constraint on David’s attack: if the client receives a response
from the server based on his spoofed SYN, it will send a RST and terminate the connection,
putting David back at step 1.

We call this attack blind spoofing, as David has no concrete information when attempting to
spoof a new session.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 6 –



Question 2 TLS protocol details
Depicted below is a typical instance of a TLS handshake.

Client Server

1. Client sends 256-bit random number Rb and supported ciphers

2. Server sends 256-bit random number Rs and chosen cipher

3. Server sends certificate

4. DH: Server sends {g, p, ga mod p}K−1
server

5. Server signals end of handshake

6. DH: Client sends gb mod p
RSA: Client sends {PS}Kserver

Client and server derive cipher keys Cb, Cs and integrity keys Ib, Is
from Rb, Rs, PS

7. Client sends MAC(dialog, Ib)

8. Server sends MAC(dialog, Is)

9. Client data takes the form {M1,MAC(M1, Ib)}Cb

10. Server data takes the form {M2,MAC(M2, Is)}Cs

1. ClientHello

2. ServerHello

3. Certificate

4. ServerKeyExchan
ge

5. ServerHelloDone

6. ClientKeyExchange

7. ChangeCipherSpec, Finished

8. ChangeCipherSpe
c, Finished

9. Application Data

10. Application Data

Figure 1: TLS 1.2 Key Exchange

Q2.1 What is the purpose of the client random and server random fields?

Solution: They act as nonces to prevent replay attacks.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 6 –



Q2.2 ClientHello and ServerHello are not encrypted or authenticated. Explain why a man-in-the-middle
cannot exploit this. (Consider both the Diffie-Hellman and RSA case.)

Solution: The use of either public key encryption (RSA handshake) or a Diffie-Hellman
exchange prevents an eavesdropper from learning the Premaster Secret.

A MITM attacker who alters any of the values will be exposed, as follows.

For the RSA handshake case, the MITM will be unable to read the Premaster Secret sent by
the client because it is encrypted using the server’s public key. When the client and server
exchange MACs over the the handshake dialog, the MITM will be unable to compute the
correct MACs for their altered dialog because they will not know the corresponding integrity
keys derived from the Master secret.

For the Diffie-Hellman case, the MITM will be unable to alter the value of ga mod p, because
the client requires that the value have a correct signature using the server’s public key. Because
the MITM cannot alter the value, they cannot substitute ga′ mod p for which they know a′.
Without knowledge of the exponent, the MITM cannot compute gab mod p to obtain the
Premaster Secret.

Q2.3 Note that in the TLS protocol presented above, there are two cipher keys Cb and Cs. One key is
used only by the client, and the other is used only by the server. Likewise, there are two integrity
keys Ib and Is. Alice proposes that both the server and the client should simply share one cipher
key C and one integrity key I . Why might this be a bad idea?

Solution: Vulnerable to reflection attacks: a man-in-the-middle can send a client’s applica-
tion data back to them. It will still verify the appropriate checks, but the user will think that
this is the response from the server. Likewise, an attacker can reflect a server’s response back
to the client. Note that due to the existence of sequence numbers in the TLS specification, the
actual attack would be a little more complicated.

Q2.4 The protocol given above is a simplified form of what actually happens. After step 8 (ChangeCi-
pherSpec), the protocol as described above is still vulnerable. What is the vulnerability and how
could you fix this?

Solution: An attacker can perform a replay attack, where they send the same application
data twice. The solution is to add sequence numbers (which is what the actual TLS specification
does, with some extra details involved).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 6 –



Question 3 TLS threats
An attacker is trying to attack the company Boogle and its users. Assume that users always visit Boogle’s
website with an HTTPS connection, using ephemeral Diffie-Hellman. You should also assume that
Boogle does not use certificate pinning. The attacker may have one of three possible goals:

1. Impersonate the Boogle web server to a user

2. Discover some of the plaintext of data sent during a past connection between a user and Boogle’s
website

3. Replay data that a user previously sent to the Boogle server over a prior HTTPS connection

For each of the following scenarios, describe if and how the attacker can achieve each goal.

Q3.1 The attacker obtains a copy of Boogle’s certificate.

Solution: None of the above. The certificate is public. Anyone can obtain a copy simply by
connecting to Boogle’s webserver. So learning the certificate doesn’t help the attacker.

Q3.2 The attacker obtains the private key of a certificate authority trusted by users of Boogle.

Solution:

The attacker can impersonate the Boogle web server to a user. The attacker can’t decrypt past
data. First, Boogle’s private key is used in the protocol, not the CA’s. Second, Diffie–Hellman
provides “forward-secrecy” (as in part (c)), and so the attacker could not decrypt it regardless.

The CA’s private key can be used for creating bogus certificates, which can be used to fool the
client into thinking it is talking to Boogle.

Replays aren’t possible, due to the nonces in the TLS handshake.

Q3.3 The attacker obtains the private key corresponding to an old certificate used by Boogle’s server
during a past connection between a victim and Boogle’s server. Assume that this old certificate
has been revoked and is no longer valid. Note that the attacker does not have the private key
corresponding to current certificate.

Solution: None. Unless the attacker can figure out either a or b, the attacker will not be able
to decrypt the data of past connections.

This can’t be used to impersonate a Boogle server because the attacker doesn’t have a fresh
valid certificate corresponding to the stolen private key, and can’t use the previous certificate
for that key because it’s been revoked.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 6 –


