
CS 161
Summer 2024

Introduction to
Computer Security Discussion 7

Question 1 Boogle
Boogle is a social networking website that’s looking into expanding into other domains. Namely,
they recently started a map service to try their hand at fusing that with social media. The URL for
the main website is https://www.boogle.com, and they want to host the map service at https:
//maps.boogle.com.

Q1.1 For each of the following webpages, determine whether the webpage has the same origin as
http://boogle.com/index.html, and provide a brief justification.

i. https://boogle.com/index.html

ii. http://maps.boogle.com

iii. http://boogle.com/home.html

iv. http://maps.boogle.com:8080

Solution:

i. False. https://boogle.com/index.html and http://boogle.com/index.html do
not have the same origin, since their protocols (https) and (http) are different.

ii. False. http://maps.boogle.com and http://boogle.com/index.html do not have
the same origin, since their domains (maps.boogle.com) and
(boogle.com) are different. The same-origin policy performs string matching on the proto-
col, domain, and port.

iii. True. The paths are not checked in the same-origin policy.

iv. False. http://maps.boogle.com:8080 and
http://boogle.com/index.html do not have the same origin, because their ports
(8080) and (80) are different. Note that if the port is not specified, the port defaults to 80
for http and 443 for https.

Q1.2 Describe how to make a cookie that will be sent to only Boogle’s map website and its subdomains.

Solution: Set the domain parameter of the cookie to .maps.boogle.com

Q1.3 How can Boogle ensure that cookies are only transmitted encrypted so eavesdroppers on the
network can’t trivially learn the contents of the cookies?

Solution: Set the secure flag on each cookie.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 5

https://www.boogle.com
https://maps.boogle.com
https://maps.boogle.com
http://boogle.com/index.html
https://boogle.com/index.html
http://maps.boogle.com
http://boogle.com/home.html
http://maps.boogle.com:8080
https://boogle.com/index.html
http://boogle.com/index.html
http://maps.boogle.com
http://boogle.com/index.html
http://maps.boogle.com:8080
http://boogle.com/index.html

Q1.4 Boogle wants to be able to host websites for users on their servers. They decide to host each user’s
website at https://[username].boogle.com. Why might this not be a good idea?

Solution: A malicious user could set cookies that would be sent to other users’ sites as well as
the entire .boogle.com domain. Also, any cookies meant for boogle.com will go to the malicious
user.

Q1.5 Propose an alternate scheme so that Boogle can still host other users websites with less risk, and
explain why this scheme is better.

Note: It is okay if the user sites interfere with each other, as long as they cannot affect official
Boogle websites.

Solution: Boogle should create a new domain exclusively for user hosted content, like https:
//[username].boogleusercontent.com. This way, user sites cannot set cookies that will
affect all boogle domains due to the cookie setting policy. This is known as a cookie tossing
attack, and is one of the reasons why github hosts user sites on github.io instead of github.com
(see https://blog.github.com/2013-04-09-yummy-cookies-across-domains/).

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 5 –

https://[username].boogle.com
https://[username].boogleusercontent.com
https://[username].boogleusercontent.com
https://blog.github.com/2013-04-09-yummy-cookies-across-domains/

Question 2 Session Fixation
A session cookie is used by most websites in order to manage user logins. When the user logs in, the
server sends a randomly-generated session cookie to the user’s browser. The server also stores the
cookie value in a database along with the corresponding username. The user’s browser sends the session
cookie to the server whenever the user loads any page on the site. The server then looks the session
cookie up in the database and retrieves the corresponding username. Using this, the server can know
which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example, visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

Q2.1 Can you spot an attack on this scheme?
Q2.2 Suppose the problem you spotted has been fixed as follows: foobar.edu now establishes new

sessions with session IDs based on a hash of the tuple (username, time of connection). Is
this secure? If not, what would be a better approach?

Solution:

Q2.1 The main attack is known as session fixation. Say the attacker establishes a session
with foobar.edu, receives a session ID of 42, and then tricks the victim into visiting
http://foobar.edu/browse.html?sessionid=42 (maybe through an img tag). The vic-
tim is now browsing foobar.edu with the attacker’s account. Depending on the application,
this could have serious implications. For example, the attacker could trick the victim to pay
his bills instead of the victim’s (as intended).

Another possibility is for the attacker to fix the session ID and then send the user a
link to the log-in page. Depending on how the application is coded, it might so hap-
pen that the application allows the user to log-in but reuses the previous (attacker-
set) session ID. For example, if the victim types in his username and password at
http://foobar.edu/login.html?sessionid=42, then the session ID 42 would be bound
to his identity. In such a scenario, the attacker could impersonate the victim on the site. This is
uncommon nowadays, as most login pages reset the session ID to a new random value instead
of reusing an old one.

Q2.2 The proposed fix is not secure since it solves the wrong problem - it doesn’t fix either issue. In
fact, it makes things weaker by significantly reducing the entropy of the session cookie.

The correct fix is for the server to generate cookie values afresh, rather than setting them
based on the session ID provided via URL parameters. Also, the server shouldn’t allow cookies
to be set by the URL. This makes the attackers job more difficult as they have to do some form
of XSS in order to manipulate the client’s cookie vs. just clicking on a link.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 5 –

Question 3 Cross-Site Request Forgery (CSRF)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider the following
example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given account name.
Users first need to authenticate with a password. However, once a user has authenticated, Patsy-Bank
associates their session ID with an authenticated session state.

Q3.1 Explain what could happen when Alice visits the chat forum and views Mallory’s comment.

Solution: The img tag embedded in the form causes the browser to make a request to
http://patsy-bank.com/transfer?amt=1000&to=mallory with Patsy-Bank’s cookie. If
Alice was previously logged in (and didn’t log out), Patsy-Bank might assume Alice is autho-
rizing a transfer of 1000 USD to Mallory.

Q3.2 Patsy-Bank decides to check that the Referer header contains patsy-bank.com. Will the attack
above work? Why or why not?

Solution: In most cases, it will solve the problem since the Referer header will contain the
blog’s URL instead of patsy-bank.com.

However, not all browsers send the Referer header, and even when they do, not all requests
include it.

Q3.3 Describe one way Mallory can modify her attack to always get around this check.

Solution: She can have the link go to a URL under Mallory’s control which contains
patsy-bank.com such as patsy-bank.com.attacker.com or
attacker.com/attack?dummy=patsy-bank.com. Then this page can redirect to the
original malicious link. Now the Referer header will pass the check.

Another solution, is if the Patsy-Bank has a so-called “open redirect”
http://patsy-bank.com/redirect?to=url, the referrer for the redirected request will be
http://patsy-bank.com/redirect?to=.... An attacker can abuse this functionality by
causing a victim’s browser to fetch a URL like http://patsy-bank.com/redirect?to=
http://patsy-bank.com/transfer..., and from patsy-bank.com’s perspective, it will see a
subsequent request for http://patsy-bank.com/transfer... that indeed has a Referer
from patsy-bank.com.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 5 –

http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/transfer

Q3.4 Recall that the Referer header provides the full URL. HTTP additionally offers an Origin header
which acts the same as the Referer but only includes the website domain, not the entire URL.
Why might the Origin header be preferred?

Solution: Leaking the entire URL can be a violation of privacy against users. As an example,
consider Alice transferred money by visiting
http://patsy-bank.com/transfer?amt=1000&to=bob and subsequently went to a
website under an attacker’s control - now the attacker has learned the exact amount of
money Alice sent and to who. The Origin header would only leak that Alice was at the
patsy-bank.com.

As a sidenote not directly related to the question, the Origin is a very useful way to solve the
CSRF problem since it makes it much easier for multiple, trusted sites to make some action.
For example, Patsy-Bank might trust
http://www.trustedcreditcardcompany.com to directly transfer money from a user’s
account. This is a use-case that the CSRF token-based solution doesn’t support cleanly.

Q3.5 Almost all browsers support an additional cookie field SameSite. When SameSite=strict, the
browser will only send the cookie if the requested domain and origin domain correspond to the
cookie’s domain. Which CSRF attacks will this stop? Which ones won’t it stop? Give one big
drawback of setting SameSite=strict.

Solution: It stops almost all CSRF attacks, except those involving open redirects from the
website in question or if the website itself has an XSS vulnerability.

However, setting SameSite=strict can greatly limit functionality since any exter-
nal links that require a user to be logged in won’t work. For instance, consider a friend sends
you a Facebook link via email, clicking on that link will require you to sign in again since
your session cookie wasn’t sent with the request.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 5 –

