
CS 161
Summer 2024

Introduction to
Computer Security Discussion 2

Question 1 Software Vulnerabilities
For the following code, assume an attacker can control the value of basket, n, and owner_name passed
into search_basket.

This code contains several security vulnerabilities. Circle three such vulnerabilities in the code and
briefly explain each of the three on the next page.

1 s t ruc t c a t {
2 char name [6 4] ;
3 char owner [6 4] ;
4 in t age ;
5 } ;
6
7 / ∗ S e a r c h e s t h r ough a BASKET o f c a t s o f l e n g t h N (N sh ou l d be l e s s

than 3 2) . Adop t s a l l c a t s w i th age l e s s than 12 (k i t t e n s) .
Adopted k i t t e n s have t h e i r owner name o v e r w r i t t e n wi th OWNER_NAME
. R e t u r n s t h e number o f k i t t e n s adop t e d . ∗ /

8 s i z e _ t s e a r c h _ b a s k e t (s t ruc t c a t ∗ baske t , in t n , char ∗ owner_name) {
9 s t ruc t c a t k i t t e n s [3 2] ;
10 s i z e _ t num_ki t t ens = 0 ;
11 i f (n > 3 2) return −1 ;
12 for (s i z e _ t i = 0 ; i <= n ; i ++) {
13 i f (b a s k e t [i] . age < 1 2) {
14 / ∗ R e a s s i g n t h e owner name . ∗ /
15 s t r c p y (b a s k e t [i] . owner , owner_name) ;
16 / ∗ Copy t h e k i t t e n from th e b a s k e t . ∗ /
17 k i t t e n s [num_ki t t ens] = ba sk e t [i] ;
18 num_ki t t ens ++ ;
19 / ∗ P r i n t h e l p f u l mes sage . ∗ /
20 p r i n t f (" Adopt ing k i t t e n : ") ;
21 p r i n t f (b a s k e t [i] . name) ;
22 p r i n t f (" \ n ") ;
23 }
24 }
25 / ∗ Adopt k i t t e n s . ∗ /
26 a d o p t _ k i t t e n s (k i t t e n s , num_ki t t ens) ; / / Imp l emen t a t i o n no t shown

.
27 return num_ki t t ens ;
28 }

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 6

1. Explanation:

2. Explanation:

3. Explanation:

Describe how an attacker could exploit these vulnerabilities to obtain a shell:

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 6 –

Question 2 Hacked EvanBot
Hacked EvanBot is running code to violate students’ privacy, and it’s up to you to disable it before it’s
too late!

1 # include < s t d i o . h>
2
3 void spy_on_s tuden t s (void) {
4 char b u f f e r [1 6] ;
5 f r e a d (bu f f e r , 1 , 2 4 , s t d i n) ;
6 }
7
8 in t main () {
9 spy_on_s tuden t s () ;
10 return 0 ;
11 }

The shutdown code for Hacked EvanBot is located at address 0xdeadbeef, but there’s just one problem—
Bot has learned a new memory safety defense. Before returning from a function, it will check that its
saved return address (rip) is not 0xdeadbeef, and throw an error if the rip is 0xdeadbeef.

Clarification during exam: Assume little-endian x86 for all questions.

Assume all x86 instructions are 8 bytes long. Assume all compiler optimizations and buffer overflow
defenses are disabled.

The address of buffer is 0xbffff110.

Q2.1 (3 points) In the next 3 subparts, you’ll supply a malicious input to the fread call at line 5 that
causes the program to execute instructions at 0xdeadbeef, without overwriting the rip with the
value 0xdeadbeef.

The first part of your input should be a single assembly instruction. What is the instruction? x86
pseudocode or a brief description of what the instruction should do (5 words max) is fine.

Q2.2 (3 points) The second part of your input should be some garbage bytes. How many garbage bytes
do you need to write?

(G) 0 (H) 4 (I) 8 (J) 12 (K) 16 (L)

Q2.3 (3 points) What are the last 4 bytes of your input? Write your answer in Project 1 Python syntax,
e.g. \x12\x34\x56\x78.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 6 –

Q2.4 (3 points) When does your exploit start executing instructions at 0xdeadbeef?

(G) Immediately when the program starts

(H) When the main function returns

(I) When the spy_on_students function returns

(J) When the fread function returns

(K)

(L)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 6 –

Question 3 I Understood that Reference!
Consider the following vulnerable C code:

1 void vu l n e r a b l e (in t s t a r t , char ∗ p t r) {
2 p t r [s t a r t] = p t r [3] ;
3 p t r [s t a r t + 1] = p t r [2] ;
4 p t r [s t a r t + 2] = p t r [1] ;
5 p t r [s t a r t + 3] = p t r [0] ;
6 }
7
8 void he l p e r (i n t 8 _ t num) {
9 i f (num > 124) {
10 return ;
11 }
12 char a r r [1 2 8] ;
13 f g e t s (a r r , 1 28 , s t d i n) ;
14 v u l n e r a b l e (num , a r r) ;
15 }
16
17 in t main (void) {
18 in t y ;
19 f r e a d (&y , s i z eo f (in t) , 1 , s t d i n) ;
20 h e l p e r (y) ;
21 return 0 ;
22 }

Assume that:

• You are on a little-endian 32-bit x86 system.

• There is no other compiler padding or saved additional registers.

Write your answer in Python 2 syntax (just like in Project 1).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 6 –

Q3.1 (3 min) Fill in the stack diagram below, assuming that execution has entered the call to
vulnerable:

RIP of main

SFP of main

RIP of vulnerable

SFP of vulnerable

For the rest of this question, assume that the RIP of main is located at 0xbfffdc0c and that your
malicious shellcode is located at 0xef302010.

In the next two subparts, construct an exploit that executes your malicious shellcode.

Q3.2 (5 min) Provide an input to the variable y in the fread in main.

For this subpart only, you may write a decimal number instead of its byte representation.

Q3.3 (5 min) Provide an input to the variable arr in the fgets in helper.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 6 –

