
CS 161
Summer 2024

Introduction to
Computer Security Exam Prep 2

Q1 Indirection (0 points)
Consider the following vulnerable C code:

1 # include < s t d l i b . h>
2 # include < s t r i n g . h>
3
4 s t ruc t l o g _ en t r y {
5 char t i t l e [8] ;
6 char ∗msg ;
7 } ;
8
9 void l o g _ ev en t (char ∗ t i t l e , char ∗msg) {
10 s i z e _ t l en = s t r n l e n (msg , 2 5 6) ;
11 i f (l e n == 256) return ; / ∗ Message t o o l o ng . ∗ /
12 s t ruc t l o g _ en t r y ∗ en t ry = ma l l o c (s i z eo f (s t ruc t l o g _ en t r y)) ;
13 entry −>msg = ma l l oc (2 5 6) ;
14 s t r c p y (entry −> t i t l e , t i t l e) ;
15 s t r n cpy (entry −>msg , msg , l en + 1) ;
16 add_ to_ l og (en t r y) ; / ∗ Imp l emen t a t i o n no t shown . ∗ /
17 }

Assume you are on a little-endian 32-bit x86 system and no memory safety defenses are enabled.

Q1.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 13

(C) Line 14

(D) Line 15

(E)

(F)

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 6

Q1.2 (3 points) Fill in the numbered blanks on the following stack and heap diagram for log_event.
Assume that lower-numbered addresses start at the bottom of both diagrams.

Stack Heap
msg 3
1 2
rip
sfp
len
entry

(G) 1 = entry->title 2 = entry->title 3 = msg

(H) 1 = entry->title 2 = msg 3 = entry->title

(I) 1 = title 2 = entry->title 3 = entry->msg

(J) 1 = title 2 = entry->msg 3 = entry->title

(K)

(L)

Using GDB, you find that the address of the rip of log_event is 0xbfffe0f0.

Let SHELLCODE be a 40-byte shellcode. Construct an input that would cause this program to execute
shellcode. Write all your answers in Python 2 syntax (just like Project 1).

Q1.4 (6 points) Give the input for the title argument.

Q1.5 (6 points) Give the input for the msg argument.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 6 –

Q2 Stack Exchange (0 points)
Consider the following vulnerable C code:

1 # include <byteswap . h>
2 # include < i n t t y p e s . h>
3 # include < s t d i o . h>
4
5 void p r ep a r e _ i npu t (void) {
6 char b u f f e r [6 4] ;
7 i n t 6 4 _ t ∗ p t r ;
8
9 p r i n t f ("What i s the b u f f e r ? \ n ") ;
10 f r e a d (bu f f e r , 1 , 6 8 , s t d i n) ;
11
12 p r i n t f ("What i s the p o i n t e r ? \ n ") ;
13 f r e a d (& ptr , 1 , s i z eo f (u i n t 6 4 _ t ∗) , s t d i n) ;
14
15 i f (p t r < b u f f e r | | p t r >= b u f f e r + 6 8) {
16 p r i n t f (" P o i n t e r i s o u t s i d e b u f f e r ! ") ;
17 return ;
18 }
19
20 / ∗ R e v e r s e 8 b y t e s o f memory a t t h e a d d r e s s p t r ∗ /
21 ∗ p t r = bswap_64 (∗ p t r) ;
22 }
23
24 in t main (void) {
25 p r e p a r e _ i npu t () ;
26 return 0 ;
27 }

The bswap_64 function takes in 8 bytes and returns the 8 bytes in reverse order.

Assume that the code is run on a 32-bit system, no memory safety defenses are enabled, and there are
no exception handlers, saved registers, or compiler padding.

Q2.1 (3 points) Fill in the numbered blanks on the following stack diagram for prepare_input.

1 (0xbffff494)
2 (0xbffff490)
3 (0xbffff450)
4 (0xbffff44c)

(A) 1 = sfp, 2 = rip, 3 = buffer, 4 = ptr

(B) 1 = sfp, 2 = rip, 3 = ptr, 4 = buffer

(C) 1 = rip, 2 = sfp, 3 = buffer, 4 = ptr

(D) 1 = rip, 2 = sfp, 3 = ptr, 4 = buffer

(E)

(F)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 6 –

Q2.2 (4 points) Which of these values on the stack can the attacker write to at lines 10 and 13? Select all
that apply.

(G) buffer

(H) ptr

(I) sfp

(J) rip

(K) None of the above

(L)

Q2.3 (3 points) Give an input that would cause this program to execute shellcode. At line 10, first input
these bytes:

(A) 64-byte shellcode

(B) \xbf\xff\xf4\x4c

(C) \x4c\xf4\xff\xbf

(D) \xbf\xff\xf4\x50

(E) \x50\xf4\xff\xbf

(F)

Q2.4 (3 points) Then input these bytes:

(G) 64-byte shellcode

(H) \xbf\xff\xf4\x4c

(I) \x4c\xf4\xff\xbf

(J) \xbf\xff\xf4\x50

(K) \x50\xf4\xff\xbf

(L)

Q2.5 (3 points) At line 13, input these bytes:

(A) \xbf\xff\xf4\x50

(B) \x50\xf4\xff\xbf

(C) \xbf\xff\xf4\x90

(D) \x90\xf4\xff\xbf

(E) \xbf\xff\xf4\x94

(F) \x94\xf4\xff\xbf

Q2.6 (3 points) Suppose you replace 68with 64 at line 10 and line 15. Is this modified code memory-safe?

(G) Yes (H) No (I) (J) (K) (L)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 6 –

Q3 Palindromify (0 points)
Consider the following C code:

1 s t ruc t f l a g s {
2 char debug [4] ;
3 char done [4] ;
4 } ;
5
6 void pa l i n d r om i f y (char ∗ input , s t ruc t f l a g s ∗ f) {
7 s i z e _ t i = 0 ;
8 s i z e _ t j = s t r l e n (i npu t) ;
9
10 while (j > i) {
11 i f (i npu t [i] != i npu t [j]) {
12 i npu t [j] = i npu t [i] ;
13 i f (s trncmp ("BBBB " , f −>debug , 4) == 0) {
14 p r i n t f (" Next : %s \ n " , i npu t) ;
15 }
16 }
17 i ++ ; j − − ;
18 }
19 }
20
21 in t main (void) {
22 s t ruc t f l a g s f ;
23 char b u f f e r [8] ;
24 while (s trncmp ("XXXX" , f . done , 4) != 0) {
25 g e t s (b u f f e r) ;
26 p a l i n d r om i f y (bu f f e r , &f) ;
27 }
28 return 0 ;
29 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved
registers in all questions.

Here is the function definition for strncmp:

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function compares the first (at most) n bytes of two
strings s1 and s2. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 6 –

Q3.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 12

(C) Line 24

(D) Line 25

(E)

(F)

Q3.2 (3 points) Which of these inputs would cause the program to execute shellcode located at
0xbfff34d0?

(G) '\x00' + (11 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(H) '\x00' + (19 * 'A') + '\xd0\x34\xff\xbf'

(I) (20 * 'X') + '\xd0\x34\xff\xbf'

(J) '\x00' + (7 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(K) (16 * 'X') + '\xd0\x34\xff\xbf'

(L) None of the above

Q3.3 (3 points) Assume you did the previous part correctly. At what point will the instruction pointer
jump to the shellcode?

(A) Immediately afterpalindromify returns

(B) Immediately after main returns

(C) Immediately after gets returns

(D) Immediately after printf returns

(E)

(F)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 6 –

